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Abstract
In this work, differential geometry of the Z3-graded quantum superplane is
constructed. The corresponding quantum Lie superalgebra and its Hopf algebra
structure are obtained.

PACS numbers: 02.40.Gh, 02.10.Hh, 02.20.Sv, 02.20.Vw

1. Introduction

Noncommutative geometry [1] has started to play an important role in different fields of
mathematical physics over the past decade. The basic structure giving a direction to
the noncommutative geometry is a differential calculus on an associative algebra. The
noncommutative differential geometry of quantum groups was introduced by Woronowicz
[2]. In this approach, the quantum group is taken as the basic noncommutative space and
the differential calculus on the group is deduced from the properties of the group. The other
approach, initiated by Wess and Zumino [3], followed Manin’s emphasis [4] on the quantum
spaces as the primary objects. Differential forms are defined in terms of noncommuting
(quantum) coordinates, and the differential and algebraic properties of quantum groups acting
on these spaces are obtained from the properties of the spaces. The natural extension of their
scheme to superspace [5] was introduced in [6, 7].

Recently, there have been many attempts to generalize Z2-graded constructions to the
Z3-graded case [8–12]. Chung [12] studied the Z3-graded quantum space that generalizes the
Z2-graded space called a superspace, using the methods of Wess and Zumino [3]. In this work,
we have investigated the noncommutative geometry of the Z3-graded quantum superplane.
These calculi are discussed from the covariance point of view, using the Hopf algebra structure
of the quantum superplane [13]. In order to obtain the corresponding quantum Z3-grading Lie
superalgebra, we constructed a left-covariant differential calculus on the Z3-graded quantum
superplane (of course, this may also be done using a right-covariant differential calculus on it).
Hopf algebra structure of the obtained superalgebra is given, using the method in [14].

0305-4470/02/194257+12$30.00 © 2002 IOP Publishing Ltd Printed in the UK 4257
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Let us briefly investigate a general Z3-graded algebraic structure. Let z be a Z3-graded
variable. Then we say that the variable z satisfies the relation

z3 = 0.

If f (z) is an arbitrary function of the variable z, then the function f (z) becomes a polynomial
of degree two in z, that is,

f (z) = a0 + a1z + a2z
2

where a0, a2, a1 denote three fixed numbers whose grades are grad(a0) = 0, grad(a2) = 1 and
grad(a1) = 2, respectively.

The cyclic group Z3 can be represented in the complex plane by means of the cubic roots
of 1: let j = e

2π i
3 (i2 = −1). Then one has

j 3 = 1 and j 2 + j + 1 = 0 or (j + 1)2 = j.

One can define the Z3-graded commutator [A,B] as

[A,B]Z3 = AB − jabBA

where grad(A) = a and grad(B) = b. If A and B are j -commutative, then we have

AB = jabBA.

2. The algebra of functions on the Z3-graded quantum superplane

It is well known that the Z2-graded quantum plane or the quantum superplane is defined as an
associative algebra whose even coordinate x and odd (Grassmann) coordinate θ satisfy

xθ = qθx θ2 = 0

where q is a nonzero complex deformation parameter.
One of the possible ways to generalize the quantum superplane is to increase the power of

nilpotency of its odd generator. So, a possible generalization can be defined as an associative
unital algebra generated by x and θ satisfying

xθ = qθx θ3 = 0. (1)

Here, the coordinate x with respect to the Z3-grading is of grade 0 and the coordinate θ with
respect to the Z3-grading is of grade 1.

The quantum superplane underlies a noncommutative differential calculus on a smooth
manifold with exterior differential d satisfying d2 = 0. So the above mentioned generalization
of the superplane raises the natural question of possible generalization of differential calculus
to one with exterior differential d satisfying d3 = 0. From an algebraic point of view, a
sufficient algebraic structure underlying a differential calculus is the notion of the Z3-graded
differential algebra. Therefore, we can generalize the differential calculus with the help of an
appropriate generalization of Z3-graded differential algebra.

Elementary properties of the Z2-graded quantum superplane are described in [13]. We
state briefly the properties we are going to need in this work.

Let A be a free unital associative algebra generated by two elements x, θ obeying relations
(1). We know that the algebra A is a graded Hopf algebra with the following costructures
[13]: the coproduct � : A → A ⊗ A is defined by

�(x) = x ⊗ x �(θ) = θ ⊗ x + x ⊗ θ �(1) = 1 ⊗ 1. (2)

The counit ε : A → C is given by

ε(x) = 1 ε(θ) = 0. (3)
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We extend the algebra A by including the inverse of x which obeys

xx−1 = 1 = x−1x.

If we extend the algebra A by adding the inverse of x then the algebra A admits a coinverse
S : A → A defined by

S(x) = x−1 S(θ) = −x−1θx−1. (4)

Note that

�(x−1) = x−1 ⊗ x−1.

It is not difficult to verify the following properties of costructures:

(� ⊗ id) ◦ � = (id ⊗ �) ◦ �

µ ◦ (ε ⊗ id) ◦ � = µ′ ◦ (id ⊗ ε) ◦ � (5)

m ◦ (S ⊗ id) ◦ � = ε = m ◦ (id ⊗ S) ◦ �

where id denotes the identity mapping,

µ : C ⊗ A → A µ′ : A ⊗ C → A
are the canonical isomorphisms, defined by

µ(c ⊗ a) = ca = µ′(a ⊗ c) ∀a ∈ A ∀c ∈ C
and m is the multiplication map:

m : A ⊗ A → A m(a ⊗ b) = ab. (6)

The multiplication in A ⊗ A is defined with the rule

(A ⊗ B)(C ⊗ D) = j grad(B)grad(C)AC ⊗ BD. (7)

This type of relation is called a braiding relation. The differential structure of braided
quantum spaces is given in [15].

3. Differential calculi on the Z3-graded quantum superplane

In this section, we shall build up the noncommutative differential calculus on the Z3-graded
quantum superplane. This involves functions on the superplane, differentials and differential
forms. So we have to define a linear operator d which acts on the functions of the coordinates
of the Z3-graded quantum superplane. For the definition, it is sufficient to define the action of
d on the coordinates and on their products.

We postulate that the linear operator d applied to x produces a 1-form whose Z3-grade is
1 by definition. Similarly, application of d to θ produces a 1-form whose Z3-grade is 2. We
shall denote the obtained quantities by dx and dθ , respectively. When the linear operator d
is applied to dx (or twice by iteration to x) it will produce a new entity which we shall call a
1-form of grade 2, denoted by d2x and applied to dθ produces a 1-form of grade 0, modulo 3,
denoted by d2θ . Finally, we require that d3 = 0.

3.1. Differential algebra

Let us begin the ordering the properties of the exterior differential. The exterior differential d is
an operator which gives the mapping from the generators of the Z3-graded quantum superplane
to the differentials

d : a 	→ da a ∈ {x, θ}.
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We demand that the exterior differential d has to satisfy two properties:

d3 = 0 (8)

and the Z3-graded Leibniz rule

d(fg) = (df )g + j grad(f )f (dg). (9)

It is well known that in classical differential calculus, functions commute with
differentials. From an algebraic point of view,the space of 1-forms is a free finite bimodule over
the algebra of smooth functions generated by the first-order differentials and the commutativity
shows how its left and right structures are related to each other.

In order to establish a noncommutative differential calculus on the Z3-graded quantum
superplane, we assume that the commutation relations between the coordinates and their
differentials are in the following form:

x dx = X dx x

x dθ = A dθ x + B dx θ
(10)

θ dx = C dx θ + D dθ x

θ dθ = Y dθ θ.

The coefficients A,B, etc will be determined in terms of the complex deformation
parameters q and j . To find them, we shall use the covariance of the noncommutative
differential calculus.

Since we assume that d3 = 0 and d2 �= 0, in order to construct a self-consistent theory
of differential forms it is necessary to add to the first-order differentials of coordinates dx,
dθ a set of second-order differentials d2x, d2θ . Appearance of higher order differentials is a
peculiar property of a proposed generalization of differential forms. This has as a consequence
certain problems.

Now, we assume that d is no longer the classical exterior differential, i.e. d2 �= 0. For
example, if we take a particular 1-form θ dx and apply to it the exterior differential d, we
obtain

d(θ dx) = dθ dx + jθ d2x.

Therefore, differentiating (10) with regard to the Z3-graded Leibniz rule (9) one gets

x d2x = X d2x x + (jX − 1)(dx)2

x d2θ = A d2θ x + B d2x θ + (j 2A + jBF − F) dθ dx
(11a)

θ d2x = j−1C d2x θ + j−1D d2θ x + (jD + CF − j−1) dθ dx

θ d2θ = Yj−1 d2θ θ + (jY − j−1)(dθ)2.

Here, we have assumed that

dx dθ = F dθ dx (dx)3 = 0 (11b)

where F is a parameter that shall be described later.
Relations (11a) are not homogeneous in the sense that the commutation relations between

the coordinates and second-order differentials include first-order differentials as well. Later,
we shall see that the commutation relations between the coordinates and their second-order
differentials can be made homogeneous. They will not include first-order differentials by
removing them using the covariance of the noncommutative differential calculus.
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We now return to relations (11a). Applying the exterior differential d to relations (11a),
we obtain

dx d2x = j−2 d2x dx

dx d2θ = −A

Q
d2θ dx +

1 + B − j 2AF−1

Q
d2x dθ

(11c)

dθ d2x = − C

Q′ d2x dθ +
D − CF + j−1

Q′ d2θ dx

dθ d2θ = d2θ dθ

where

Q = AF−1 + j 2(1 + B) and Q′ = D + j 2(1 + CF).

As a consequence, the second-order differentials have to satisfy the following relation:

d2x d2θ = jF d2θ d2x. (11d )

3.2. Covariance

We see from the above relations (11a) that the commutation relations between the generators of
A and their second-order differentials are not homogeneous in the sense that they include first-
order differentials. In order to homogenize relations (11a), we shall consider the covariance
of the noncommutative differential calculus.

We first note that consistency of a differential calculus with commutation relations (1)
means that the differential algebra is a graded associative algebra generated by the elements
of the set {x, θ, dx, dθ, d2x, d2θ}.

Let �(A) be a free left module over the algebra A generated by the elements of the
set {x, θ, dx, dθ, d2x, d2θ}. The module �(A) becomes a unital associative algebra if one
defines a multiplication law on �(A) by relations (1) and (11).

We consider a map φL : �(A) → A ⊗ �(A) such that

φL ◦ d = (τ ⊗ d) ◦ � (12)

where τ : �(A) → �(A) is the linear map of degree zero which gives

τ (a) = j grad(a)a ∀a ∈ �(A). (13)

Thus we have

φL(dx) = x ⊗ dx φL(dθ) = jθ ⊗ dx + x ⊗ dθ. (14)

We now define a map �L as follows:

�L(a1 db1 + db2a2) = �(a1)φL(db1) + φL(db2)�(a2). (15)

We now apply the linear map �L to relations (15):

�L(x dx) = �(x)φL(dx) = XφL(dx)�(x) = X�L(dx x)

�L(x dθ) = �(x)φL(dθ)

= AφL(dθ)�(x) + BφL(dx)�(θ) + j (X − q−1A − B)xθ ⊗ dx x

= A�L(dθ x) + B�L(dx θ) + j (X − q−1A − B)xθ ⊗ dx x

�L(θ dx) = �(θ)φL(dx)

= CφL(dx)�(θ) + DφL(dθ)�(x) + (X − qjC − jD)θx ⊗ dx x

= C�L(dx θ) + D�L(dθ x) + (X − qjC − jD)θx ⊗ dx x
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and

�L(θ dθ) = �(θ)φL(dθ)

= YφL(dθ)�(θ) + (B − jY + qj 2C)θx ⊗ dx θ

+ j (X − jY )θ2 ⊗ dx x + (A + qj 2D − qj 2Y )xθ ⊗ dθ x

= Y�L(dθ θ) + (B − jY + qj 2C)θx ⊗ dx θ

+ j (X − jY )θ2 ⊗ dx x + (A + qj 2D − qj 2Y )xθ ⊗ dθ x.

We see from the last three relations that in order to have left covariance D must be zero. Then
with Y arbitrary

A = j 2qY C = q−1Y
(16)

B = j (1 − j)Y X = jY.

On the other hand, the action of d on θ3 = 0 gives

1 + jY + j 2Y 2 = 0. (17a)

So,

Y = j or Y = j 2. (17b)

For Y = j 2, relations (11a) are not homogeneous. Hence, we must take Y = j .
Also, since

�L(dx dθ) = �L(dx)�L(dθ)

= F�L(dθ)�L(dx) + j (qj − F)θx ⊗ (dx)2

we must have

F − qj = 0. (18)

Here, we used that

(x ⊗ dx)(θ ⊗ dx) = jxθ ⊗ (dx)2.

Relations (10) and (11) are explicitly as follows: the commutation relations of variables
and their differentials are

x dx = j 2 dx x

x dθ = q dθ x + (j 2 − 1) dx θ
(19)

θ dx = jq−1 dx θ

θ dθ = j dθ θ

and among those first-order differentials are

dx dθ = jq dθ dx (dx)3 = 0. (20)

The commutation relations between variables and second-order differentials are

x d2x = j 2 d2x x

x d2θ = q d2θ x + (j 2 − 1) d2x θ
(21)

θ d2x = q−1 d2x θ

θ d2θ = d2θ θ.

The commutation relations between first-order and second-order differentials are

dx d2x = j−2 d2x dx

dx d2θ = q d2θ dx + (j − j−1) d2x dθ
(22)

dθ d2x = j 2q−1 d2x dθ

dθ d2θ = d2θ dθ
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and those among the second-order differentials are

d2x d2θ = j 2q d2θ d2x. (23)

Now, it can be checked that the linear map �L leaves invariant relations (19)–(23). One
can also check that the following identities are satisfied:

(id ⊗ �L) ◦ �L = (� ⊗ id) ◦ �L m ◦ (ε ⊗ id) ◦ �L = id. (24)

We call as left coaction the map �L. The map �L makes the �(A) a left A-module. So,
the pair (�(A),�L) is a left-covariant left A-module over Hopf algebra A. However the pair
(�(A), d) is a differential calculus over A, and d is a left comodule map, i.e. for all a ∈ A,

(τ ⊗ d) ◦ �(a) = �L(da). (25)

Consequently, the triple (�(A), d,�L) is a left-covariant differential calculus over the Hopf
algebra A.

4. Cartan–Maurer 1-forms on A

In this section, we shall define 2-forms using the generators of A and show that they are
left-invariant. If we call them w and u then one can define them as follows [13]:

w = dx x−1 u = dθ x−1 − dx x−1θx−1. (26)

The elements w and u with the generators of A satisfy the following rules:

xw = j 2wx θw = jwθ

xu = qux θu = jquθ.
(27)

The first-order differentials with 1-forms satisfy the following relations:

w dx = j dx w u dx = q−1 dx u

w dθ = j 2 dθ w + q−1(1 − j) dx u (28a)

u dθ = q−1 dθ u + q−2(1 − j) dx u θx−1

and with second-order differentials

w d2x = j 2 d2x w u d2x = q−1 d2x u

w d2θ = d2θ w + q−1(j − j−1) d2x u (28b)

u d2θ = q−1 d2θ u + q−2(1 − j) d2x u θ x−1.

The commutation rules of the elements w and u are

w3 = 0 wu = uw. (29)

The elements w and u are both left-invariant with the following structures:

�L(w) = 1 ⊗ w �L(u) = 1 ⊗ u. (30)

The counit ε is given by [13]

ε(w) = 0 ε(u) = 0 (31)

and the coinverse S is defined by

S(w) = −w S(u) = −u. (32)

One can easily check that the following properties are satisfied:

(id ⊗ �L) ◦ �L = (� ⊗ id) ◦ �L

m ◦ (ε ⊗ id) ◦ �L = id

m ◦ (S ⊗ id) ◦ �L = id.

Note that the commutation relations (27)–(29) are compatible with �L, ε and S, in the sense
that �L(xw) = �(x)�L(w) = j 2�L(wx), �L(w

3) = 0 and so on.
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5. Quantum Lie superalgebra

The commutation relations of Cartan–Maurer forms allow us to construct the algebra of the
generators. In order to obtain the quantum Lie superalgebra of the algebra generators, we first
write the Cartan–Maurer forms as

dx = wx dθ = wθ + ux. (33)

The differential d can then be expressed in the form

d = wT + u∇. (34)

Here T and ∇ are the quantum Lie superalgebra generators. We now shall obtain the
commutation relations of these generators. Considering an arbitrary function f of the
coordinates of the Z3-graded quantum superplane and using that d3 = 0 one has

d2f = (dw)Tf + (du)∇f + jw dTf + j 2u d∇f

and

d3f = j−1w d2Tf + ju d2∇f − dw dTf − j du d∇f + d2wTf + d2u∇f.

So we need the 2-forms. Applying the exterior differential d to relations (26) one has

dw = d2x x−1 − jw2

(35)
du = d2θ x−1 − d2xx−1θx−1 + uw.

Also, since

w dw = j dww

w du = j 2 duw + (j − j−1) dwu

u dw = dwu u du = du u

we have

d2w = 0 d2u = 0. (36)

Using the Cartan–Maurer equations we find the following commutation relations for the
quantum Lie superalgebra:

T∇ = ∇T ∇3 = 0. (37)

The commutation relations (37) of the algebra generators should be consistent with
monomials of the coordinates of the Z3-graded quantum superplane. To do this, we evaluate
the commutation relations between the generators of algebra and the coordinates. The
commutation relations of the generators with the coordinates can be extracted from the Z3-
graded Leibniz rule:

d(xf ) = (dx)f + x(df )

= w(x + j 2xT )f + u(qx∇)f

= (wT + u∇)xf

(38)

and
d(θf ) = (dθ)f + jθ(df )

= w(θ + j 2θT )f + u(x + qj 2θ∇)f

= (wT + u∇)θf.

(39)

This yields

T x = x + j 2xT T θ = θ + j 2θT

∇x = qx∇ ∇θ = x + qj 2θ∇.
(40)
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We know that the differential operator d satisfies the Z3-graded Leibniz rule. Therefore,
the generators T and ∇ are endowed with a natural coproduct. To find them, we need the
following commutation relations:

T xm = 1 − j 2m

1 − j 2
xm + j 2mxmT (41)

∇xm = qmxm∇ (42)

where use was made of (40). Relation (41) is understood as an operator equation. This implies
that when T acts on arbitrary monomials xmθ ,

T (xmθ) = 1 − j 2m+2

1 − j 2
(xmθ) + j 2m+2(xmθ)T (43)

from which we obtain

T = 1 − j 2N

1 − j 2
(44)

where N is a number operator acting on a monomial as

N(xmθ) = (m + 1)xmθ. (45)

We also have

∇(xmθ) = qmxm+1 + j 2qm+1(xmθ)∇. (46)

So, applying the Z3-graded Leibniz rule to the product of functions f and g, we write

d(fg) = [(wT + u∇)f ]g + j grad(f )f (wT + u∇)g (47)

with the help of (34). From the commutation relations of the Cartan–Maurer forms with the
coordinates of the Z3-graded quantum superplane, we can compute the corresponding relations
of w and u with functions of the coordinates. From (27) we have

fw = j 2N−1wf f u = jqNuf (48)

where f = xmθ . Inserting (48) in (47) and equating coefficients of the Cartan–Maurer forms,
we get

T (fg) = (Tf )g + j grad(f )j 2N−1f (T g)
(49)

∇(fg) = (∇f )g + j grad(f )jqNf (∇g).

Consequently, we have the coproduct

�(T ) = T ⊗ 1 + j−N ⊗ T
(50)

�(∇) = ∇ ⊗ 1 + j 2qN ⊗ ∇.

6. Conclusion

To conclude, we introduce here commutation relations between the coordinates of the
Z3-graded quantum superplane and their partial derivatives and thus illustrate the connection
between the relations in section 5, and the relations which will now be obtained.

To proceed, let us obtain the relations of the coordinates with their partial derivatives. We
know that the exterior differential d can be expressed in the form

df = (dx ∂x + dθ ∂θ )f. (51)
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Then, for example,

d(xf ) = dxf + x df

= dx
[
1 + j 2x∂x + (j 2 − 1)θ∂θ

]
f + q dθ x∂θf

= (dx ∂xx + dθ ∂θx)f

so that
∂xx = 1 + j 2x∂x + (j 2 − 1)θ∂θ ∂xθ = j 2q−1θ∂x

∂θx = qx∂θ ∂θθ = 1 + j 2θ∂θ .
(52)

The commutation relations between derivatives are

∂x∂θ = jq∂θ∂x ∂3
θ = 0. (53)

The Z3-graded Hopf algebra structure for ∂ is given by

�(∂x) = ∂x ⊗ ∂x �(∂θ ) = ∂θ ⊗ ∂x + ∂x ⊗ ∂θ

ε(∂x) = 1 ε(∂θ ) = 0 (54)

S(∂x) = ∂−1
x S(∂θ ) = −∂−1

x ∂θ∂
−1
x

provided that the formal inverse ∂−1
x exists. However, these comaps do not leave invariant

relations (52).
We know, from section 5, that the exterior differential d can be expressed in form (34),

which we repeat here,

df = (wT + u∇)f. (55)

Considering (51) together with (55) and using (33) one has

T = x∂x + θ∂θ ∇ = x∂θ . (56)

Using relations (52) and (53) one can check that the relations of the generators in (56) coincide
with (37). It can also be verified that the action of the generators in (56) on the coordinates
coincides with (40).

The Z3-graded noncommutative differential geometry we have constructed satisfies all
expectations for such a structure. In particular, all Hopf algebra axioms are satisfied without
any modification. Moreover, the extension of the structure presented in this paper can be
generalized to ZN.
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Appendix. Quantum matrices in the Z3-graded space

In this appendix, we shall investigate the quantum supermatrices in the Z3-graded quantum
superplane. We know, from section 2, that the Z3-graded quantum superplane is generated by
coordinates x and θ , and commutation rules (1), which we repeat here,

xθ = qθx θ3 = 0. (57)

These relations define a deformation of the algebra of functions on the superplane generated
by x and θ , and we have denoted it by A. The dual Z3-graded quantum superplane A& is
generated by ϕ and y with the relations

ϕy = qjyϕ ϕ3 = 0 (58)

where dx = ϕ and dθ = y in (20).
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Let T be a 2 × 2 (super)matrix in Z3-graded space,

T =
(

a β

γ d

)
(59)

where a and d with respect to the Z3-grading are of grade 0, and β and γ with respect to the
Z3-grading are of grade 2 and of grade 1, respectively. We now consider linear transformations
with the following properties [16]:

T : A → A T : A& → A&. (60)

The action on the elements of A of T is
( x′
θ ′

) = ( a β

γ d

)( x

θ

)
. We assume that the entries of T are

j-commutative with the elements of A, i.e. for example,

ax = xa θβ = j 2βθ

etc. As a consequence of the linear transformations in (60) the elements

x ′ = ax + βθ θ ′ = γ x + dθ (61)

should satisfy relations (57). Applying the exterior differential d to relation (61) one has

ϕ′ = aϕ + j 2βy y ′ = jγ ϕ + dy. (62)

These elements must satisfy relations (58). Consequently, we have the following commutation
relations between the matrix elements of T:

aβ = j−1q−1βa dβ = jq−1βd

aγ = qγ a dγ = qγ d

ad = da + q−1(1 − j)βγ βγ = q2γβ γ 3 = 0.
(63)

We shall denote with GLq,j (1|1) the quantum supergroup in Z3-graded space determined by
generators a, β, γ , d satisfying the commutation relations (63).

Note that these relations can be obtained from the requirement that A and A& have to be
covariant under the left coactions

δ : A → GLq,j (1|1) ⊗ A δ& : A& → GLq,j (1|1) ⊗ A& (64)

such that

δ(x) = a ⊗ x + β ⊗ θ δ(ϕ) = a ⊗ ϕ + j 2β ⊗ y

δ(θ) = γ ⊗ x + d ⊗ θ δ(y) = jγ ⊗ ϕ + d ⊗ y
(65)

provided that the entries of T are j-commutative with the elements of A and A&.
Note that relations (63) are slightly different from the results of [12]. The reason for this

difference is that in [12], since it was assumed that commutation relations of the differentials
are

dx dθ = r−1 dθ dx (dx)2 = 0 = (dθ)2

the commutation relations among the matrix elements of a matrix in Z3-graded space were
obtained via the use of them. On the other hand, we use the commutation relations of the
coordinates of the Z3-graded quantum superplane with their differentials.

An interesting problem is the construction of a differential calculus on the Z3-graded
quantum supergroup GLq,j (1|1) using the methods of this paper and [17]. Work on this issue
is in progress.
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